
Pressure regulator pilot-operated

»SYNTESI« series

PLUS

Art. No. 146089 Type No. 5626R006

Exemplary illustration

The pilot operated regulator can adjust pressure remotely via a pneumatic command.

The two rolling diaphragms offer several advantages:

- Increased stroke, which allows greater opening of the valve and hence increased flow rate.
- Reduced dynamic and pickup friction, which results in increased response speed and high sensitivity.
- High precision in maintaining the set pressure, both with variable flow rates and different inlet pressures.

The design features the same construction characteristics as those used for a standard regulator, so the advantages are the same, namely:

- Compensation of the regulated pressure varies with the upstream pressure.
- Presence of a relieving valve and downstream pressure quick relieving.

ATEX version on request!

Technical data

Series	Syntesi
Size	2
Max. input pressure	13 bar
Temperature range	-10 to 50 °C
Input	G 1
Output	G 1
Front and back port thread	G 1/4
Flow rate measurement 1	at P_1 = 10 bar, P_2 = 6.3 bar and pressure drop Δ_p = 0.5 bar
Flow rate 1	7300 NI/min
Flow rate measurement 2	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 1$ bar
Flow rate 2	7700 NI/min
Medium	Compressed air or other neutral gases
Housing	Technopolymer
Sealant	NBR
Diaphragms	NBR 60 Shore (hardness) with polyester fabric insert
Pilot cap	Anodised aluminium plate
Pilot connection	M5
A	60.5 mm
A1	95.0 mm
В	81.0 mm
D	70.5 mm

Commercial data

Customs tariff number	84811099
Country of origin	IT
eCl@ss 5.1.4	37011108
eCl@ss 9.0	37011108
UNSPSC_Code_v190501	41112404
UNSPSC_CodeDesc_v190501	Pressure regulator

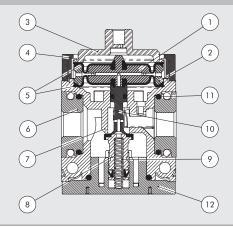
SUNTESI: PILOT OPERATED REGULATOR

- The pilot operated regulator can adjust pressure remotely via a pneumatic command.

 The two rolling diaphragms offer several advantages:

 increased stroke, which allows greater opening of the valve and hence increased flow rate;
- reduced dynamic and pickup friction, which results in increased response speed and high sensitivity;
 high precision in maintaining the set pressure, both with variable flow
- rates and different inlet pressures.

The design features the same construction characteristics as those used for a standard regulator, so the advantages are the same, namely: compensation of the regulated pressure varies with the upstream pressure; presence of a relieving valve and downstream pressure quick

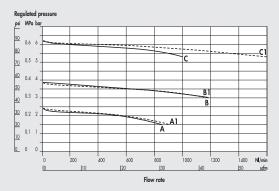

Syntesi® PILOT OPERATED REGULATOR

TECHNICAL DATA			REG SY1			REG	SY2	
Threaded port		1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1"
Max. inlet pressure	bar		15			1;	3	
	MPa		1.5			1.	3	
	psi		217			18	8	
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)	NI/min	900	1700	3300	5500	5500	7300	
(inlet pressure 10 bar)	scfm	32	60	116	194	194	258	
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	NI/min	1000	2800	3550	6800	6800	7700	
(inlet pressure 10 bar)	scfm	53	99	120	240	240	272	
Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi)	NI/min		70			10	0	
	scfm		2.5			3.	5	
Min/max temperature at 10 bar; 1 MPa; 145 psi	°C		From -10 to +50	0		From -10) to +50	
Full outflow with zero inlet pressure					Included			
Upstream pressure compensation				Include	ed, via balance	d valve		
Weight	g	149	144	135	456	429	425 4	413
Fluid				Compress	ed air or other i	inert gases		
Mounting position					In any position			
Additional air take-off, for pressure gauges or fittings		1,	/8", front and re	ear		1/4", fron	and rear	
Additional air take-off flow rate at 6.3 bar			500			140	00	
(0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)			18			50)	
Wall fixing screws			No. 2 M4 screw	/S		No. 2 M	5 screws	
Notes on use				The pressure	must always be	set upwards.		

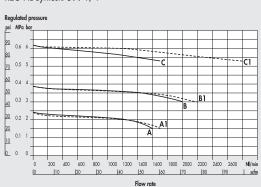
COMPONENTS

- Anodized aluminium plate
- Anodized aluminium diaphragm washer

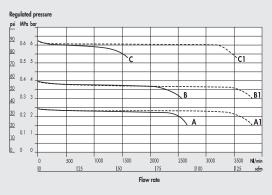
- Anoaized a...
 Anodized aluminium upper cup
 Technopolymer flange
 Rolling diaphragm
 IN/OUT bushing made of OT58 nickel-plated brass or passivated aluminium for 3/4" 1"
 Technopolymer regulator body
 OT58 brass valve, with NBR vulcanized gasket
 Stainless steel valve spring
 Technopolymer rod

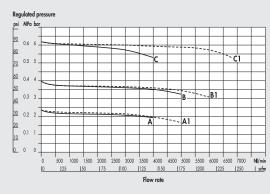


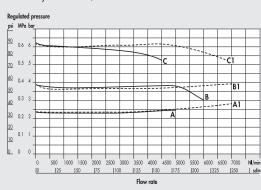
RIEGLER

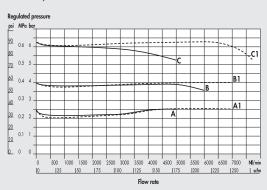


FLOW CHARTS


REG PIL Syntesi® SY1 1/8"

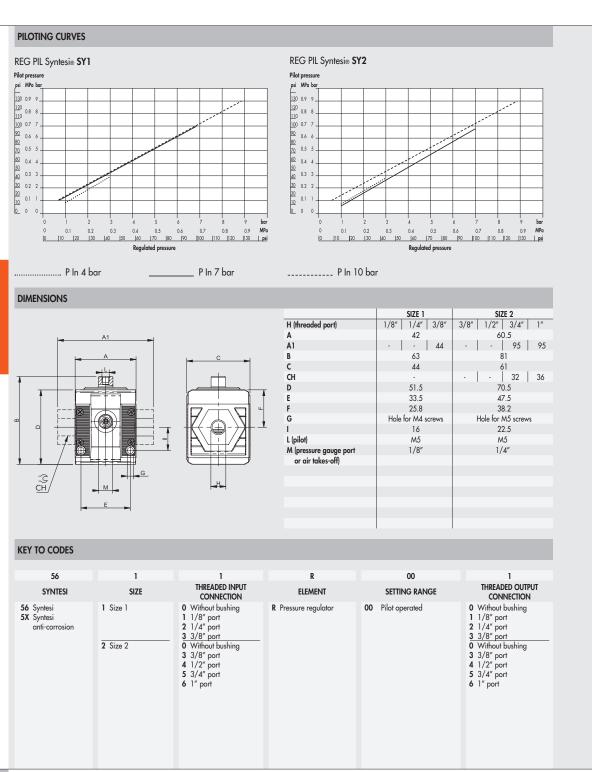

REG PIL Syntesi® SY1 1/4"


REG PIL Syntesi® SY1 3/8"


REG PIL Syntesi® SY2 3/8"

REG PIL Syntesi® SY2 1/2"

REG PIL Syntesi® SY2 3/4" - 1"



C1.2

Syntesi® PILOT OPERATED REGULATOR

UNITS

Syntesi® PILOT OPERATED REGULATOR

C1.26

CI

N.B. Besides t Code	Description	Code	at your will according to the key to code Description	s. NOTE	
Suntaria SVI I	PILOT OPERATED REGULATOR	Symtosia SV2	PILOT OPERATED REGULATOR	Anti-corrosion	vorcion
	DEC DILCUT IN THE I	Sylliesio 312	PEO DIL CVO ::		
5610R000	REG PIL SY1 without bushings	5620R000	REG PIL SY2 without bushings	5X	
5611R001	REG PIL SY1 1/8	5623R003	REG PIL SY2 3/8	Example	
5612R002	REG PIL SY1 1/4	5624R004	REG PIL SY2 1/2	5X11R001	REG PIL SY1 1/8 anti-corrosion
5613R003	REG PIL SY1 3/8	5625R005	REG PIL SY2 3/4		
		5626R006	REG PIL SY2 1		
		3020K000	REO TIE 512 T		
LIGHTE					
NOTES					

C1.27

CI

GENERAL TECHNICAL DATA SUNTESI.

Syntesie is an important milestone achieved by Metal Work, the result of thirty years' experience producing air-treatment units. It has been studied in minute detail to obtain the best possible performance in a reduced space and with limited weight. The capacity is much higher than that of other units of the same size.

This modular unit features a very simple yet effective system that requires no brackets, stay bolts or yoke for assembling the elements. The basic version of Syntesi® incorporates numerous functions that are not provided or are only optional with traditional units. Examples are padlockable knobs, additional pneumatic ports on the front and back, flow options from left to right or vice versa, regulators with compensation system - which are accurate even when the upstream pressure changes, with rapid downstream pressure relief - full indelible marking, automatic condensate drain even in size 1, and 360° visual inspection of oil and condensate levels. The basic materials, technopolymer and nickel-plated brass have excellent corrosion resistance. An anti-corrosion version is available with stainless steel components (screws, plates) or Geomet®-reated ones (regulator springs).

C	n
Г	
F	=
P	4
г	\neg

GENERAL TECHNICAL DATA Syntesi®

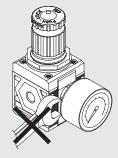
TECHNICAL DATA	SIZE 1			SIZE 2				
Threaded port		1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1″
Max. input pressure	bar		15			1	3	
	MPa		1.5			1	.3	
	psi		217				88	
Flow rate					ogue of the various			
Min/max temperature at 10 bar; 1 MPa; 145 psi	°C		from -10 to +50		l		0 to +50	
Padlockable knob		TI	he knobs of the re				can all be padlocked	
Fluid					ssed air or other ine			
Mounting position					ogue of the various			
Direction of flow		Flow options right to left or vice versa						
Additional air take-off, for pressure gauges or fittings		1/8", tr	ont and rear, on a				ear, on all modules	
Wall fixing screws			No. 2 M4 screw			No. 2 M	5 screws	
Certification for potentially explosive atmosphere				(Ex) 3G Ex h	IIC T5 Gc -10°C < 1 IIC T100 °C Dc	la < 50°C		
according to Atex 2014/34/EU rule				II 3D Ex h I	IIIC 1100 °C Dc			

ANTI-CORROSION VERSION

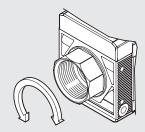
Differences compared to the standard version:

- stainless steel screws
- stainless steel plate for R, FR, V3V knobs
- Geomet®-treated regulator spring and filter-regulator

C1.4

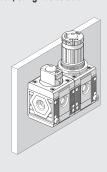

RIEGLER



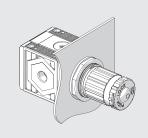

FIXING TO FRONT PORTS

ROTARY BUSHINGS

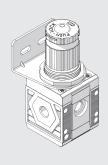
LASER MARKING

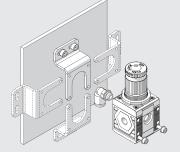


The following is marked indelibly on the body:
- Metal Work trademark

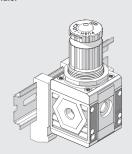

- Code
- Maximum pressure and temperature Degree of filtration or pressure range, where relevant
- Week and year of manufacture
- Atex categoryMade in Italy

MOUNTING OPTIONS

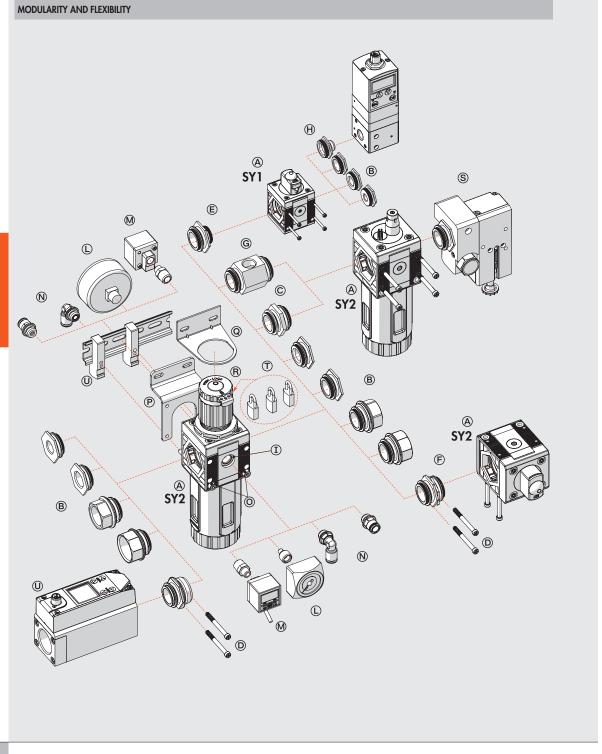

On the wall, using two screws


On a panel

Using knob bracket



Using a bracket



The bracket can be secured in any position, and the fittings can be mounted on the pressure gauge air intake at the back of the unit.

On a DIN EN50022 bar with the apposite adaptator

GENERAL TECHNICAL DATA Syntesi®

ClA

The various elements of Syntesie (a) can be connected to the air feed and delivery circuit using pneumatic nickel brass or passivated aluminium ports (B) and can be fixed together using nipples ©.

The nipples and ports are easy to remove by unscrewing the two front screws [®]. This solution has numerous advantages:

- Reduced overall dimensions.
- Free composition of multiple elements, without the need for brackets, stay bolts or yoke.
- The threads for the fittings are metallic, allowing high tightening torques, also for tapered threads.

 Maximum flexibility: a unit can be transformed at any time by adding an element or replacing a port with another one, e.g. 1/4" instead of 1/8".

- The air intake port can be the same or different from the outlet port, as desired. Standard Syntesi⊕ ports are: 1/8", 1/4", 3/8" for size 1; 3/8", 1/2", 3/4", 1" for size 2.

It may be necessary to use a vice to insert the bushes into size 2.

The nipples have different functions:

- Nipple © joins two elements of the same size together.
- Size adaptor © can be used to connect an element in the Syntesi® 2 series with one in the Syntesi® 1 series.
- The 90° adaptor (E) can be used to connect two 90° angled elements. For example, it can help directing the regulator knob or the control knob of a sectioning valve towards the user.
- The two-way air intake @ is a simple and cost-effective system which, besides connecting two elements together, has 2 opposing threaded air intakes.

- The adaptor for Regtronic ® can be used to fix the Regtronic 1/4" proportional valve to a Syntesi® size 1 element.

Additional ports ©. On the front and back of ALL Syntesi® elements there is a port (1/8" for size 1, 1/4" for size 2) that can be used for pressure gauges ©, pressure switches @ or, given the high flow rate, as additional air take-off @. These ports are downstream of the element, so, for example, a regulator port can supply air at a set pressure or a filter port can supply filtered air (not valid for activated carbon filter and depurator).

Wall fixing. Only two through screws @ are needed. No bulky brackets or additional flanges are required. The bracket @ can be used to separate

the unit from the fixing wall, e.g. to mount a fitting to the rear port.

Fixing on a DIN EN50022 bar. Can be done using the bracket kit ①.

Regulator fixing bracket ②. Regulators and filter-regulators can also be fixed using a steel bracket ③ that embraces the bell.

Padlockable knob ®. The knobs of regulators, filter-regulator and sectioning valves can all be padlocked. The steel plate is included in the supply. You can insert up to two 3 mm diameter padlocks ® on size 1 and three padlocks on size 2. As an alternative, the sectioning valve can have a steel plate suitable for a single 6 mm diameter padlock.

Safety valve (S). The unit can incorporate a series 70 SAFE AIR® safety valve.

Flowmeter series FLUX 1-2 (1). The unit can incorporate a series FLUX 1 or FLUX 2 flow meter.

UNITS

Syntesi® KEY TO CODES

SUNTESI: KEY TO CODES

KEY TO CODES S	SINGLE ELEMEN	IT			
56	1	1 Threaded input	F	10	1 THREADED OUTPUT
SYNTESI	SIZE	CONNECTION	ELEMENT	TYPE	CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter-regulator L Lubricator ● V Shut off valve A Progressive starter A 5 Pressure switches P Air take-off	Varies from element to element	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
 Not available in the anti-corrosion version.

KEY TO CODES	UNIT COMP	OSED OF TWO	OR THREE ELEME	NTS					
56	1	1	٧	10	В	24	L	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT 1	TYPE	ELEMENT 2	TYPE	ELEMENT 3	TYPE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L Lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator U Ubbricator V Shut off valve A Progressive starter A Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-of	Varies from element to element	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- ▲ Not available in the anti-corrosion version.

Accessories

	Art. No.	Type No.	
Threaded port bushing, size 2, G 3/8	144691	9210011	
Threaded port bushing, size 2, G 1/2	144692	9210012	
Threaded port bushing, size 2, G 3/4	144693	9210013	·
Connecting nipple kit, size 2	144696	9210010	
Mounting bracket, size 2, standard and anti-corr.	145659	9200717X	
Connecting element 90°,, size 2	145503	9210019	
Size adapter, size 1 - size 2, incl. 4 screws	145504	9210006	
Fastening screw, size 2	145508	9210031	
Adapter for DIN rail, size 1 and size 2	145660	9200718X	

Spareparts

	Art. No.	Type No.	
Locking screw, Hexagonal socket 6 mm, G 1/4, nickel-plated brass	111410	233.03-N	
Threaded port bushing, size 2, G 1	144694	9210014	