
Pressure regulator pilot-operated

»SYNTESI« series

PLUS

Art. No. 146085 Type No. 5613R003

Exemplary illustration

The pilot operated regulator can adjust pressure remotely via a pneumatic command.

The two rolling diaphragms offer several advantages:

- Increased stroke, which allows greater opening of the valve and hence increased flow rate.
- Reduced dynamic and pickup friction, which results in increased response speed and high sensitivity.
- High precision in maintaining the set pressure, both with variable flow rates and different inlet pressures.

The design features the same construction characteristics as those used for a standard regulator, so the advantages are the same, namely:

- Compensation of the regulated pressure varies with the upstream pressure.
- Presence of a relieving valve and downstream pressure quick relieving.

ATEX version on request!

Technical data

Series	Syntosi
	Syntesi
Size	11
Max. input pressure	15 bar
Temperature range	-10 to 50 °C
Input	G 3/8
Output	G 3/8
Front and back port thread	G 1/8
Flow rate measurement 1	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 0.5$ bar
Flow rate 1	3300 NI/min
Flow rate measurement 2	at $P_1 = 10$ bar, $P_2 = 6.3$ bar and pressure drop $\Delta_p = 1$ bar
Flow rate 2	3550 NI/min
Medium	Compressed air or other neutral gases
Housing	Technopolymer
Sealant	NBR
Diaphragms	NBR 60 Shore (hardness) with polyester fabric insert
Pilot cap	Anodised aluminium plate
Pilot connection	M5
A	42.0 mm
A1	44.0 mm
В	63.0 mm
D	51.5 mm

Commercial data

Customs tariff number	84811099
Country of origin	П
eCl@ss 5.1.4	37011108
eCl@ss 9.0	37011108
UNSPSC_Code_v190501	41112404
UNSPSC_CodeDesc_v190501	Pressure regulator

SUNTESI: PILOT OPERATED REGULATOR

The pilot operated regulator can adjust pressure remotely via a pneumatic command.

- The two rolling diaphragms offer several advantages:
 increased stroke, which allows greater opening of the valve and hence increased flow rate;
- reduced dynamic and pickup friction, which results in increased response speed and high sensitivity;
- high precision in maintaining the set pressure, both with variable flow rates and different inlet pressures.

The design features the same construction characteristics as those used for a standard regulator, so the advantages are the same, namely: compensation of the regulated pressure varies with the upstream pressure; presence of a relieving valve and downstream pressure quick

REG SY2

No. 2 M5 screws

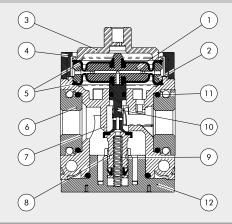
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi) (inlet pressure 10 bar) Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi) (inlet pressure 10 bar)
Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi) Syntesi® PILOT OPERATED REGULATOR Min/max temperature at 10 bar; 1 MPa; 145 psi Full outflow with zero inlet pressure Upstream pressure compensation Weight Mounting position Additional air take-off, for pressure gauges or fittings Additional air take-off flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi) 18 Wall fixing screws

	1/8"	1/4"	3/8"	3/8"	1/2"	3/4"		1"
bar		15				13		
MPa		1.5				1.3		
psi		217			1	188		
NI/min	900	1700	3300	5500	5500		7300	
scfm	32	60	116	194	194		258	
NI/min	1000	2800	3550	6800	6800		7700	
scfm	53	99	120	240	240		272	
NI/min		70		100				
scfm		2.5		3.5				
°C	1	From -10 to +50)		From -	10 to +50		
				Included				
			Include	ed, via balance	ed valve			
g	149	144	135	456	429	425		413
-			Compresse	ed air or other	inert gases			
				In any position	n			
	1/	8", front and re	ear		1/4", fro	ont and rear		
		500			1	400		

The pressure must always be set upwards.

REG SY1

COMPONENTS

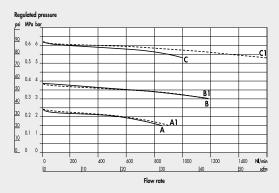

TECHNICAL DATA

Threaded port Max. inlet pressure

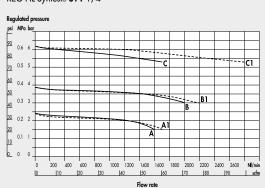
- Anodized aluminium plate
- Anodized aluminium diaphragm washer
- Anodized aluminium upper cap

- 3 Allouized autinition upper cap
 4 Technopolymer flange
 5 Rolling diaphragm
 6 IN/OUT bushing made of OT58 nickel-plated brass or passivated aluminium for 3/4" 1"
 7 Technopolymer regulator body
 8 OT58 brass valve, with NBR vulcanized gasket
 9 Stainless steel valve spring
 1 Technopolymer red

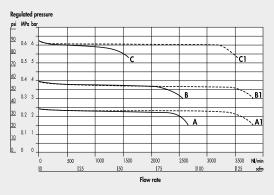
- Technopolymer rocNBR o-ring gasket Technopolymer rod
- (1) Technopolymer plug

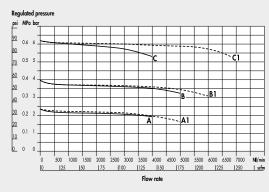


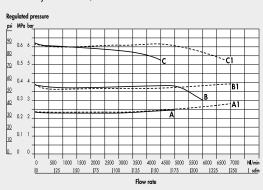
RIEGLER



FLOW CHARTS

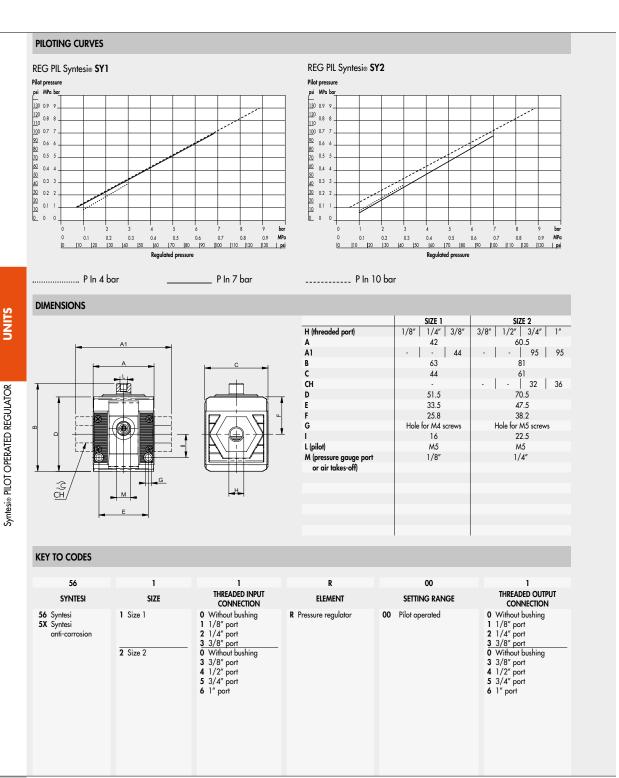

REG PIL Syntesi® SY1 1/8"


REG PIL Syntesi® SY1 1/4"


REG PIL Syntesi® SY1 3/8"


REG PIL Syntesi® SY2 3/8"

REG PIL Syntesi® SY2 1/2"



REG PIL Syntesi® SY2 3/4" - 1"

C1.25

Syntesi® PILOT OPERATED REGULATOR

C1

	Description	NOTE	
Code	DESCRIPTION	NOIE	
Syntesi _® SY2	PILOT OPERATED REGULATOR		
5620R000	REG PIL SY2 without bushings	5X	
5623R003	REG PIL SY2 3/8	Example	
5624R004		5V11P001 DEC DII SV1 1/8 anti-correction	
J024K004	REG FIL 312 1/2	SATIROUT REG FIL 311 1/6 dhiir-cortosion	
5626R006	REG PIL SY2 1		
	Code	Code Description Syntesie SY2 PILOT OPERATED REGULATOR 5620R000 REG PIL SY2 without bushings 5623R003 REG PIL SY2 3/8 8EG PIL SY2 1/2 5625R005 REG PIL SY2 3/4	Syntesi₀ SY2 PILOT OPERATED REGULATOR Anti-corrosion version 5620R000 REG PIL SY2 without bushings 5X 5623R003 REG PIL SY2 3/8 Example 5624R004 REG PIL SY2 1/2 5X11R001 REG PIL SY1 1/8 anti-corrosion 5625R005 REG PIL SY2 3/4 REG PIL SY2 1/8 REG PIL SY2 1/8

GENERAL TECHNICAL DATA SUNTESI.

Syntesie is an important milestone achieved by Metal Work, the result of thirty years' experience producing air-treatment units. It has been studied in minute detail to obtain the best possible performance in a reduced space and with limited weight. The capacity is much higher than that of other units of the same size.

This modular unit features a very simple yet effective system that requires no brackets, stay bolts or yoke for assembling the elements. The basic version of Syntesi® incorporates numerous functions that are not provided or are only optional with traditional units. Examples are padlockable knobs, additional pneumatic ports on the front and back, flow options from left to right or vice versa, regulators with compensation system - which are accurate even when the upstream pressure changes, with rapid downstream pressure relief - full indelible marking, automatic condensate drain even in size 1, and 360° visual inspection of oil and condensate levels. The basic materials, technopolymer and nickel-plated brass have excellent corrosion resistance. An anti-corrosion version is available with stainless steel components (screws, plates) or Geomet®-reated ones (regulator springs).

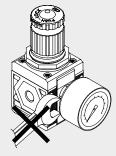
TECHNICAL DATA			SIZE 1			SIZE 2					
	1/8"	1/4"	Т	3/8"	3/8"		1/2"	\top	3/4"		1″
bar		15						13			
MPa		1.5						1.3			
psi		217						188			
				See catal	ogue of the vari	ous ele					
°C											
	Th	ne knobs of the	regula					ves can	all be padl	ocked	
	1/8", front and rear, on all modules 1/4", front and rear, on all modules			ules							
	No. 2 M4 screws No. 2 M5 screws										
			Œ	■ 3G Ex h I II 3D Ex h I	IC T5 Gc -10°C IIC T100 °C Dc	< Ta <	< 50°C				
	MPa	bar MPa psi °C Ti	bar 1/8" 1/4" 15 15 15 15 15 15 15 1	bar MPa psi 1.5 psi 217 °C from -10 to +50 The knobs of the regular 1/8", front and rear, on all ma No. 2 M4 screws	bar bar NPa 11/8" 11/4" 13/8" 15 NPa 1.5 psi 217 See catal from -10 to +50 The knobs of the regulators, filter regulators, filter regulators, filter option See catal Flow opti 1/8", front and rear, on all modules No. 2 M4 screws	bar MPa 1.5 psi 217 See catalogue of the vari from -10 to +50 The knobs of the regulators, filter regulators and stand Compressed air or other See catalogue of the vari Flow options right to left 1/8", front and rear, on all modules No. 2 M4 screws	bar MPa 1.5 psi 217 See catalogue of the various ele from -10 to +50 The knobs of the regulators, filter regulators and standard see Compressed air or other inert see catalogue of the various ele Flow options right to left or vice 1/8", front and rear, on all modules No. 2 M4 screws	bar MPa psi 1.5 See catalogue of the various elements from -10 to +50 The knobs of the regulators, filter regulators and standard sectioning val Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules 1/4", front and rear, on all modules	bar MPa 1.5 1.5 1.3 psi 217 See catalogue of the various elements from -10 to +50 The knobs of the regulators, filter regulators and standard sectioning valves can Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M4 screws No. 2 M5 sc	bar MPa 1.5 1.3 psi 217 See catalogue of the various elements "C The knobs of the regulators, filter regulators and standard sectioning valves can all be padl Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M5 screws	bar NPa 11/8" 13/8" 31/8" 31/2" 31/4" 13 NPa 15 1.5 1.3 188 217 See catalogue of the various elements from -10 to +50 The knobs of the regulators, filter regulators and standard sectioning valves can all be padlocked Compressed air or other inert gases See catalogue of the various elements Flow options right to left or vice versa 1/8", front and rear, on all modules No. 2 M4 screws No. 2 M5 screws

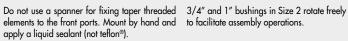
ANTI-CORROSION VERSION

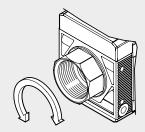
Differences compared to the standard version:

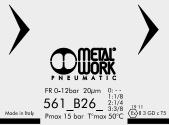
- stainless steel screws
- stainless steel plate for R, FR, V3V knobs
- Geomet®-treated regulator spring and filter-regulator

RIEGLER

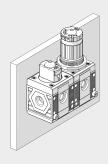



EUMAT

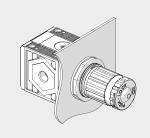

FIXING TO FRONT PORTS


ROTARY BUSHINGS

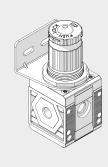
LASER MARKING

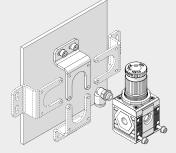


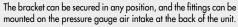
The following is marked indelibly on the body:
- Metal Work trademark


- Code
- Maximum pressure and temperature
 Degree of filtration or pressure range, where relevant
- Week and year of manufacture
- Atex categoryMade in Italy

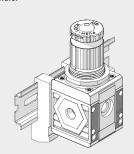
MOUNTING OPTIONS

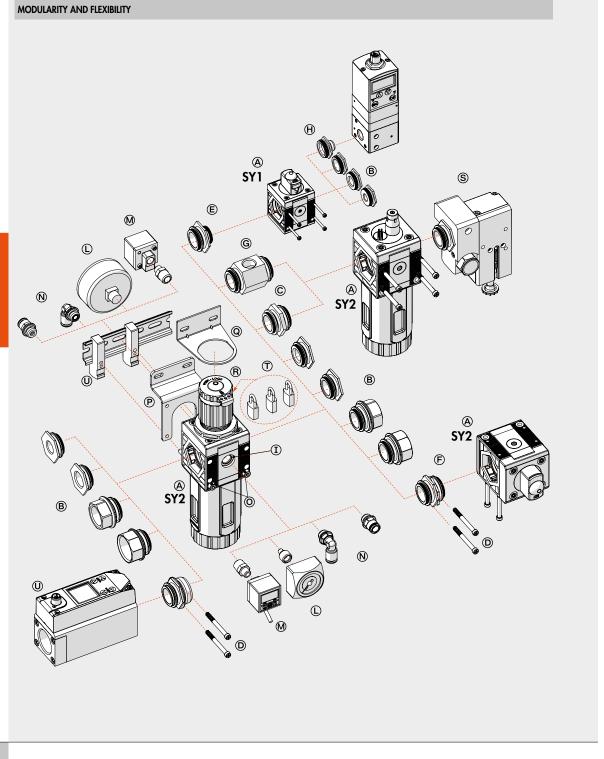

On the wall, using two screws


On a panel



Using knob bracket




Using a bracket

On a DIN EN50022 bar with the apposite adaptator

The various elements of Syntesia @ can be connected to the air feed and delivery circuit using pneumatic nickel brass or passivated aluminium ports ® and can be fixed together using nipples ©.

The nipples and ports are easy to remove by unscrewing the two front screws (D). This solution has numerous advantages:

- Reduced overall dimensions.
- Free composition of multiple elements, without the need for brackets, stay bolts or yoke.
- The threads for the fittings are metallic, allowing high tightening torques, also for tapered threads.
- Maximum flexibility: a unit can be transformed at any time by adding an element or replacing a port with another one, e.g. 1/4" instead of 1/8".

- The air intake port can be the same or different from the outlet port, as desired. Standard Syntesi⊕ ports are: 1/8", 1/4", 3/8" for size 1; 3/8", 1/2", 3/4", 1" for size 2.

It may be necessary to use a vice to insert the bushes into size 2.

The nipples have different functions:

- Nipple © joins two elements of the same size together.
- Size adaptor © can be used to connect an element in the Syntesi® 2 series with one in the Syntesi® 1 series.
- The 90° adaptor (E) can be used to connect two 90° angled elements. For example, it can help directing the regulator knob or the control knob of a sectioning valve towards the user.
- The two-way air intake @ is a simple and cost-effective system which, besides connecting two elements together, has 2 opposing threaded air intakes.

- The adaptor for Regtronic ® can be used to fix the Regtronic 1/4" proportional valve to a Syntesi® size 1 element.

Additional ports ©. On the front and back of ALL Syntesi® elements there is a port (1/8" for size 1, 1/4" for size 2) that can be used for pressure gauges ©, pressure switches ® or, given the high flow rate, as additional air take-off ®. These ports are downstream of the element, so, for example, a regulator port can supply air at a set pressure or a filter port can supply filtered air (not valid for activated carbon filter and depurator).

Wall fixing. Only two through screws © are needed. No bulky brackets or additional flanges are required. The bracket ® can be used to separate

the unit from the fixing wall, e.g. to mount a fitting to the rear port.

Fixing on a DIN EN50022 bar. Can be done using the bracket kit ①.

Regulator fixing bracket ②. Regulators and filter-regulators can also be fixed using a steel bracket ③ that embraces the bell.

Padlockable knob ®. The knobs of regulators, filter-regulator and sectioning valves can all be padlocked. The steel plate is included in the supply. You can insert up to two 3 mm diameter padlocks ® on size 1 and three padlocks on size 2. As an alternative, the sectioning valve can have a steel plate suitable for a single 6 mm diameter padlock.

Safety valve (S). The unit can incorporate a series 70 SAFE AIR® safety valve.

Flowmeter series FLUX 1-2 (1). The unit can incorporate a series FLUX 1 or FLUX 2 flow meter.

UNITS

Syntesi® KEY TO CODES

SUNTESI: KEY TO CODES

	SINGLE ELEMEN				
56 SYNTESI	1 SIZE	1 THREADED INPUT CONNECTION	F ELEMENT	10 TYPE	1 THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter-regulator L Lubricator ● V Shut off valve A A Progressive starter A S Pressure switches P Air take-off	Varies from element to element	O Without bushing 1 1/8" port 2 1/4" port 3 3/8" port O Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

The anti-corrosion version of this element is only available with manual actuation.

KEY TO CODES UNIT COMPOSED OF TWO OR THREE ELEMENTS

The anti-corrosion version of this element is
 Not available in the anti-corrosion version.

56	1	1	٧	10	В	24	L	10	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT 1	TYPE	ELEMENT 2	ТҮРЕ	ELEMENT 3	TYPE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter- regulator L lubricator ▼ Shut off valve A Progressive starter A Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L lubricator ● V Shut off valve ▲ A Progressive starter A S Pressure switches P Air Take-off	Varies from element to element	F Filter D Depurator C Active carbon filter R Pressure regulator B Filter regulator L lubricator ● V Shut off valve A Progressive starter A S Pressure switches P Air Take-of	Varies from element to element	1 1/8" port 2 1/4" port 3 3/8" port 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

- The anti-corrosion version of this element is only available with manual actuation.
 Not available in the anti-corrosion version.

Accessories

	Art. No.	Type No.	
Threaded port bushing, size 1, G 1/8	144688	9210001	
Threaded port bushing, size 1, G 1/4,	144689	9210002	
Connecting nipple kit, size 1	144695	9210000	
Mounting bracket, size 1, standard and anti-corr.	145658	9200716X	
Connecting element 90°,, size 1	145502	9210009	
Size adapter, size 1 - size 2, incl. 4 screws	145504	9210006	
Fastening screw, size 1	145507	9210030	
Adapter for DIN rail, size 1 and size 2	145660	9200718X	

Spareparts

	Art. No.	Type No.	
Locking screw, Hexagonal socket 3 mm, G 1/8, nickel-plated brass	111409	233.02-N	
Threaded port bushing, size 1, G 3/8	144690	9210003	