Umrechnungstabelle für Druckeinheiten

Umrechnui	ngstabelle für	Druckeinh	eiten								
	bar	mbar	Pa (N/m ²)	kPa (kN/m ²)	Torr mmHg (0 °C)	mWs (4 °C)	at kp/cm ²	inch Hg (0 °C)	inch H2O (4 °C)	PSI lb/inch ²	atm
bar	1	1000	100000	100	750,062	10,1972	1,01972	29,53	401,463	14,5038	0,986923
mbar	0,001	1	100	0,1	0,750062	0,0101972	0,00101972	0,02953	0,401463	0,014504	0,000986923
Pa (N/m ²)	0,00001	0,01	1	0,001	0,007501		1,01972 x 10 ⁻⁵	0,0002953	0,004015	0,000145038	9,86923 x 10 ⁶
kPa (kN/m ²)	0,01	10	1000	1	7,501	0,10197	0,010197	0,2953	4,015	0,145038	0,00986923
Torr mmHg	0,00133322	1,33322	133,322	0,133322	1	0,0135951	0,00135951	0,03937	0,53524	0,019337	0,00131579
mWs (4 °C)	0,098067	98,0665	9806,65	9,80665	73,5559	1	0,1	2,8959	39,3701	1,42233	0,096784
at kp/cm ²	0,980665	980,665	98066,5	98,0665	735,559	10	1	28,959	393,701	14,2233	0,967841
inch Hg (0 °C)	0,033864	33,8639	3386	3,386	25,4	0,345316	0,034532	1	13,5951	0,491154	0,033421
inch H2O (4 °C)	0,00249089	2,49089	249,089	0,249089	1,86832	0,0254	0,00254	0,073556	1	0,03613	0,002458
PSI lb/inch ²	0,06895	68,9476	6894,76	6,89476	51,7149	0,70307	0,070307	2,03602	27,68	1	0,068046
atm	1,01325	1013,25	101325	101,325	760	10,3323	1,03323	29,921	406,78	14,6959	1

Umrechnungstabelle für Temperaturen

Temperaturen					
Fahrenheit [°F]	Celcius [°C]	Fahrenheit [°F]	Celcius [°C]	Fahrenheit [°F]	Celcius [°C]
-40	-40	40	4,4	125	51,7
-35	-37,2	45	7,2	130	54,4
-30	-34,4	50	10,0	135	57,2
-25	-31,7	55	12,8	140	60,0
-20	-28,9	60	15,6	145	62,8
-15	-26,1	65	18,3	150	65,6
-10	-23,3	70	21,1	155	68,3
-5	20,6	75	23,9	160	71,1
0	-17,8	80	26,7	165	73,9
5	-15,01	85	29,4	170	76,7
10	-12,2	90	32,2	175	79,4
15	-9,4	95	35,0	180	82,2
20	-6,7	100	37,8	185	85,0
25	-3,9	105	40,6	190	87,8
30	-1,1	110	43,3	195	90,6
32	0	115	46,1	200	93,3
35	1,7	120	48,9		

Gewinde und ihre Maße

Gewinde DIN EN ISO 228-1

Withworth Rohrgewinde BSP (British Standard Pipe)

Rohrgewinde für nicht im Gewinde dichtende Verbindungen (zylindrisch)

Gewinde Nenngröße	Außen- durchmesser	Kern- durchmesser	Anzahl der Teilungen auf 25,4	Steigung	
	[mm]	[mm]		[mm]	
G 1/8"	9,728	8,566	28	0,907	
G 1/4"	13,157	11,445	19	1,337	
G 3/8"	16,662	14,950	19	1,337	
G 1/2"	20,955	18,631	14	1,814	
G 5/8"	22,911	20,587	14	1,814	
G 3/4"	26,441	24,117	14	1,814	
G 1"	33,249	30,291	11	2,309	
G 1 1/4"	41,910	38,952	11	2,309	
G 1 1/2"	47,808	44,845	11	2,309	
G 2"	59,614	56,656	11	2,309	
G 2 1/2"	75,184	72,226	11	2,309	
G 3"	87,884	84,926	11	2,309	
G 3 1/2"	100,330	97,372	11	2,309	
G 4"	113,030	110,072	11	2,309	

Gewinde DIN EN 10226-1 / ISO 7/1

Kegeliges Withworth Rohrgewinde BSPT (British Standard Pipe Tapered)

Rohrgewinde mit zylindrischem Innengewinde / konischem (1:16) Außengewinde

Gewinde Nenngröße außen	Nenn- durchmesser DN	Außen- Kern- durchmesser durchmesser		Anzahl der Teilungen auf 25,4	Steigung
	[mm]	[mm]	[mm]		[mm]
R 1/8"	6	9,728	8,566	28	0,907
R 1/4"	8	13,157	11,445	19	1,337
R 3/8"	10	16,662	14,950	19	1,337
R 1/2"	15	20,995	18,631	14	1,814
R 3/4"	20	26,441	24,117	14	1,814
R 1"	25	33,249	30,291	11	2,309
R 1 1/4"	32	41,910	38,952	11	2,309
R 1 1/2"	40	47,803	44,845	11	2,309
R 2"	50	59,614	56,656	11	2,309
R 2 1/2"	65	75,184	72,226	11	2,309
R 3"	80	87,884	84,926	11	2,309
R 4"	100	113,030	110,072	11	2,309

Dichtungsmaterialien

Die wichtigsten Dichtungsmaterialien									
Kurzzeichen	Bezeichnung	eingetragene Marke	Einsatzbereich	Temperatur	Artikelgruppen				
NBR	Nitril-Butadien- Kautschuk	Perbunan [®]	In Hydraulik und Pneumatik, Beständigkeit gegen Hydraulik- öle, Wasserglykole und Öl- in-Wasser-Emulsionen, Mine- ralöle und Mineralölprodukte, tierische und pflanzliche Öle, Benzin, Heizöl, Wasser bis ca. 70 °C, Luft bis 80 °C, Butan, Propan, Methan, Ethan	−30 bis 80 °C	Wartungseinheiten Zylinder und Steuerventile Verschraubungen / Verbinder				
FKM FPM	Fluor Kautschuk Fluorkarbon Kautschuk	Viton [®]	FPM zeichnet sich durch hervorragende Beständigkeiten gegen hohe Temperaturen, Ozon, Sauerstoff, Mineralöle, synthetische Hydraulikflüssigkeiten, Kraftstoffe, Aromate, viele organische Lösungsmittel und Chemikalien aus. Die Gasdurchlässigkeit ist gering und ähnlich der von Butyl-Kautschuk.	−25 bis 200 °C	Ventile und Absperr- organe Kupplungen Verschraubungen / Verbinder Zylinder und Steuerventile				
EPDM	Ethylen-Propy- len-Dien-Kaut- schuk		Dampf bis 200 °C, Heißwasser, Luft bis 150 °C, verdünnte Säuren, nicht beständig gegen Mineralölprodukte	200°C	Rückschlagventile (Anfrage) Kupplungen (Anfrage)				
CR	Polychlorpren- Kautschuk, Chlorkautschuk	Neoprene [®]	Beständigkeit gegen Siliko- nöle und -fette, Kältemittel; bessere Ozonbeständigkeit, Wetterbeständigkeit und Alte- rungsbeständigkeit gegen- über NBR	−40 bis 100 °C	Magnetventile				
PTFE	Polytetrafluor- ethylen	Teflon [®]	Beständig gegen nahezu alle organischen und anorganischen und anorganischen Chemikalien (außer elementares Fluor unter Druck oder bei hohen Temperaturen, Fluor-Halogen-Verbindungen und Alkalimetallschmelzen). - ausgeprägtes antiadhäsives Verhalten - keine Wasseraufnahme (< 0,01%) - geringe Wärmeleitfähigkeit	−200 bis 260 °C	Ventile und Absperrorgane				

Werkstoffe und ihre Anwendungsgebiete

Werkstoffe und	ihre Anwendungsgebiete				
		Ede	elstahl		
Werkstoff	Chemische Bezeichnung	AISI	Anwendungsgebiete		
1.4301	X5CrNi18-10	AISI 304	Apparate und Bauteile der chemischen Industrie, Textil-Industrie, Zelluloseherstellung, Färbereien, sowie in der Foto-, Farben-, Kunstharz- und Gummiindustrie		
1.4305	X10CrNiS18-9	AISI 303	Drehteile der Nahrungsmittel- und Molkerei-Industrie, Foto-, Farben-, Öl-, Seifen-, Papier- und Textilindustrie		
1.4401	X5CrNiMo17-12-2	AISI 316	Teile und Apparate in der Zellstoff-, Zellwolle-, Textil-, Öl- und Kunst- seiden-Industrie, Molkereien, Brauereien.		
1.4404	1.4404 X2CrNiMo17-12-2 AISI 316 L		Teile und Apparate in der Zellstoff-, Zellwolle-, Textil-, Öl- und Kunst- seiden-Industrie, Molkereien, Brauereien. Einsatz als Gusswerkstoff be Feingussfittings.		
1.4408	G-X6CrNiMo18-10	ähnlich AISI 316	Werkstoff für Feingussfittings		
1.4571	X6CrNiMoTi17-12-2	AISI 316Ti	Apparate und Bauteile der chemischen Industrie, Textil-Industrie, Zelluloseherstellung, Färbereien, sowie in der Foto-, Farben-, Kunstharz- und Gummiindustrie		
		Me	essing		
Werkstoff	Chemische Beze	ichnung	Anwendungsgebiete		
2.0331	CuZn39Pb	2	Sanitärarmaturen, Verschraubungen, Schrauben, Muttern Gesenkschmiedestücke, Stanzteile, Zahnräder, Zahnstangen Teile für Sicherheitsschlösser in Kraftfahrzeugen, Schlüssel Uhrengehäuse, Uhrwerksplatinen, Federhäuser, Datumsringe Lüsterklemmen Lochbleche (für die Papierindustrie) Schilder, Metallbuchstaben, Nietteile		

Luftaufbereitung/Filterung

Luftaufbereitung

Filterung

Die Druckluft sollte immer so sauber sein, dass sie keine Störung verursacht oder die Komponenten **nicht beschädigt.** Verschmutzungen verursachen einen höheren Verschleiß und beeinträchtigen die Lebensdauer der Pneumatikelemente.

Da die Filter im System einen Durchflusswiderstand bilden, sollte aus wirtschaftlichen Gründen der **Wirkungsgrad der Filter** an die **Anforderung der Anwendung angepasst** werden – die Luft sollte

so sauber wie **nötig** sein.

Damit eine einheitliche Beurteilung der Reinigungsgrade möglich ist, wurde dies in der **DIN ISO 8573-1:2010** in **verschiedenen Qualitätsklassen** festgelegt.

Abhängig von den Anforderungen der Anwendung gibt es unterschiedliche Ansprüche an die Druckluftqualität. Die Qualitätsklassen sollten folgende Informationen in der angegebenen Reihenfolge enthalten:

Qualitätsklassen Einheiten für verschiedene Verunreinigungen

- 1. Feste Teilchen
- 2. Wasser (flüssig/dampfförmig)
- 3. Öl (flüssig/dampfförmig)

		1. Fes	tstoffe		2. W	asser	3. Öl
Quali- täts- klasse	Maximalzahl der Partikel pro m³ Partikelgröße d [μm]		pro m ³	Konzentration C _p [mg/m ³]	Druck-Taupunkt [°C]	Wasser- konzentration (flüssig) C _w	Ölkonzentration (Tröpfchen, Aerosole, Dämpfe)
	0,1 < d ≤ 0,5	0,5 < d ≤ 1,0	1,0 < d ≤ 5,0			[g/m ³]	[mg/m ³]
0		Durch den Anlag	genlieferanten oder	r -nutzer mit höheren	Anforderungen als	Klasse 1 festgelegt	
1	≤ 20.000	≤ 400	≤ 10		≤ -70		≤ 0,01
2	≤ 400.000	≤ 6.000	≤ 100		≤ -40		≤ 0,1
3		≤ 90.000	≤ 1.000	nicht definiert	≤-20	nicht definiert	≤ 1
4			≤ 10.000		≤ +3	Thicht definiert	≤ 5
5			≤ 100.000		≤ +7		
6	nicht definiert			$0 < C_p \le 5$	≤ +10		
7	nicht denniert	nicht definiert		$5 < C_p \le 10$		C _w ≤ 0,5	nicht definiert
8	8	ni		nicht definiert	nicht definiert	0,5 < C _w ≤ 5	
9				micht denniert	ment denimert	5 < C _w ≤ 10	
Х				C _p > 10		C _w > 10	> 5

Vakuum

Vakuum

Vakuum wird im Verhältnis zum absoluten Druck angegeben (absoluter Nullpunkt). Bezeichnung: - Angabe (Minus-Angabe) in Prozent (%) im Bereich von 0...1 bar absoluter Druck

Anwendung im Gebrauch mit Grob- bzw. Arbeitsvakuum bei Riegler

Vakuum als Relativwert im Verhältnis zum durchschnittlichen atmosphärischen Umgebungsdruck (ca. 1000 mbar).

Der angegebene Vakuumwert hat ein **negatives Vorzeichen,** weil der **atmosphärische Umgebungsdruck** als **Nullpunkt** angenommen wird.

Daraus folgt, dass der niedrigste angenommene Wert -1 bar bzw. 100% Vakuum beträgt.

	Einteilung der Vakuumstufen								
Einheit	Grobvakuum	Feinvakuum	Hochvakuum	Ultrahochvakuum					
mbar	10 ³ bis 1	1 bis 10 ⁻³	10 ⁻³ bis 10 ⁻⁷	< 10 ⁻⁷					

Magnetventile

Magnetventile 2/2-3/2-Wege Medienventile

Betätigungsarten

Direkt betätigtes Ventil

Beschreibung

Bei einem direkt betätigten Ventil ist der Magnetanker mechanisch mit dem Ventilteller verbunden und bilden eine Krafteinheit. Der Magnet, der direkt auf den Anker wirkt, betätigt somit gleichzeitig das an der Unterseite des Ankers angebrachte Dichtelement.

Der Betrieb wird nicht vom Leitungsdruck oder dem Durchfluss beeinflusst, und das Ventil funktioniert von Null bis zum maximal zulässigen Nenndruck.

bauartbedingte Merkmale

Nur kleine Nennweiten – geringe Durchflussleistungen Hohe Drücke

Flüssige und gasförmige Medien im Rahmen der Spezifikationen

Schaltet ohne Druckdifferenz

Einsatz bei Grobvakuum

Vorgesteuertes Ventil

Dieses Ventil ist mit einem Vorsteuerventil und einer Drosselbohrung ausgestattet. Es nutzt den Leitungsdruck für die Funktion. Bei Erregung des Magnets wird die Vorsteuerung geöffnet und der Druck über den Ventilkolben oder der Membrane zur Ausgangsseite des Ventils hin abgebaut.

Die sich daraus ergebende Druckdifferenz erzwingt, dass der Leitungsdruck den Kolben oder die Membrane vom Hauptsitz abhebt und das Ventil öffnet.

Bei Entregung des Magnets wird die Vorsteueröffnung geschlossen und der Leitungsdruck kann sich wieder durch die Düse über den Kolben oder der Membrane aufbauen und die erforderliche Kraft für das Schließen des Ventils aufbringen. Größere Nennweiten

Höhere Drücke können mit relativ geringen Magnetleistungen geschaltet werden Flüssige und gasförmige Medien im Rahmen der Spezifikationen

Schaltfunktion nur bei Mindestvordruck möglich

(Im Katalog "Mindestbetriebsdruck" beachten) Bei größeren Nennweiten nehmen die schaltbaren Drücke ab (Im Katalog "maximaler Betriebsdruck" beachten)

Zwangsgesteuertes Ventil

Bei dieser Betätigungsart werden die Vorteile mit dem Prinzip der Direktbetätigung vereinigt. Bei zwangsgesteuerten Ventilen sind Magnetanker und Dichtung mechanisch verbunden. Der Öffnungsvorgang kann ohne Differenzdruck beginnen. Im weiteren Verlauf dieser Bewegung unterstützt der Vordruck über die zusätzlich vorhandene Vorsteuerbohrung den Öffnungsvorgang. Die Ventile arbeiten von 0 bar bis zum maximal zulässigen Druck.

Größere Nennweiten

Schaltfunktion ohne Mindestvordruck möglich Flüssige und gasförmige Medien im Rahmen der Spezifikationen

Bei größeren Nennweiten nehmen die schaltbaren Drücke ab (Im Katalog "maximaler Betriebsdruck" beachten)

Zylinderkräfte

Theoretische Zylinderkräfte doppeltwirkender Zylinder

Druck - Kraft Tabelle

Kolbenkraft [daN] 1 daN (10N) = ca 1 kg

ROIDCITI	kraft [da	-	aN (10N)	– ca i ki	9					. 1		,					
Ø Kol-	Ø Stan-		nfläche n²]	-	2	-	3		<u> </u>	teuerdr	uck (bar	1 (:	-	7	,	3
ben [mm]	ge [mm]	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug
8	4	0,5	0,38	1,0	0,8	1,5	1,1	2,0	1,5	2,5	1,9	3,0	2,3	3,5	2,6	4,0	3,0
10	4	0,79	0,66	1,6	1,3	2,4	2,0	3,1	2,6	3,9	3,3	4,7	4,0	5,5	4,6	6,3	5,3
12	6	1,13	0,85	2,3	1,7	3,4	2,5	4,5	3,4	5,7	4,2	6,8	5,1	7,9	5,9	9,0	6,8
16	6	2,01	1,73	4,0	3,5	6,0	5,2	8,0	6,9	10,1	8,6	12,1	10,4	14,1	12,1	16,1	13,8
16	8	2,01	1,51	4,0	3,0	6,0	4,5	8,0	6,0	10,1	7,5	12,1	9,0	14,1	10,6	16,1	12,1
20	8	3,14	2,64	6,3	5,3	9,4	7,9	12,6	10,6	15,7	13,2	18,8	15,8	22,0	18,5	25,1	21,1
20	10	3,14	2,36	6,3	4,7	9,4	7,1	12,6	9,4	15,7	11,8	18,8	14,1	22,0	16,5	25,1	18,8
25	8	4,91	4,41	9,8	8,8	14,7	13,2	19,6	17,6	24,5	22,0	29,5	26,4	34,4	30,8	39,3	35,2
25	10	4,91	4,12	9,8	8,2	14,7	12,4	19,6	16,5	24,5	20,6	29,5	24,7	34,4	28,9	39,3	33,0
32	12	8,04	6,91	16,1	13,8	24,1	20,7	32,2	27,6	40,2	34,6	48,3	41,5	56,3	48,4	64,3	55,3
40	12	12,57	11,44	25,1	22,9	37,7	34,3	50,3	45,7	62,8	57,2	75,4	68,6	88,0	80,0	100,5	91,5
40	16	12,57	10,56	25,1	21,1	37,7	31,7	50,3	42,2	62,8	52,8	75,4	63,3	88,0	73,9	100,5	84,4
50	16	19,63	17,62	39,3	35,2	58,9	52,9	78,5	70,5	98,2	88,1	117,8	105,7	137,4	123,4	157,1	141,0
50	20	19,63	16,49	39,3	33,0	58,9	49,5	78,5	66,0	98,2	82,5	117,8	99,0	137,4	115,5	157,1	131,9
63	16	31,17	29,16	62,3	58,3	93,5	87,5	124,7	116,6	155,9	145,8	187,0	175,0	218,2	204,1	249,4	233,3
63	20	31,17	28,03	62,3	56,1	93,5	84,1	124,7	112,1	155,9	140,2	187,0	168,2	218,2	196,2	249,4	224,2
80	20	50,27	47,12	100,5	94,2	150,8	141,4	201,1	188,5	251,3	235,6	301,6	282,7	351,9	329,9	402,1	377,0
80	25	50,27	45,36	100,5	90,7	150,8	136,1	201,1	181,4	251,3	226,8	301,6	272,1	351,9	317,5	402,1	362,9
100	25	78,54	73,63	157,1	147,3	235,6	220,9	314,2	294,5	392,7	368,2	471,2	441,8	549,8	515,4	628,3	589,0
125	32	122,72	114,68	245,4	229,4	368,2	344,0	490,9	458,7	613,6	573,4	736,3	688,1	859,0	802,7	981,7	917,4
160	40	201,06	188,5	402,1	377,0	603,2	565,5	804,2	754,0	1005,0	942,5	1206,0	1131,0	1407,0	1320,0	1609,0	1508,0
200	40	314,16	301,59	628,3	603,2	942,5	904,8	1257,0	1206,0	1571,0	1508,0	1885,0	1810,0	2199,0	2111,0	2513,0	2413,0

Theoretische Zylinderkräfte einfachwirkender Zylinder							
Einfachwirkende Kurzhubzylinder							
Durchmesser [mm]	Blockkraft der Feder N	max. Hub [mm]	Kraft bei entspannter Feder N				
12	6	25	1.5				
16	7	25	3				
20	12	25	4				
25	14	25	5				
32	33	50	6				
40	45	50	15				
50	70	50	20				
63	81	50	25				
·	Einfachwirkende Zy	linder nach ISO 6432					
8	3	50	1				
10	5	50	1				
12	7	50	3				
16	20	50	5				
20	22	50	12				
25	28	50	17				

Empfehlung:

Üblicherweise werden in der Praxis die Pneumatik-Zylinder bis ca. 75 % der theoretischen Zylinderkraft eingesetzt.

Industrieklebstoffe

RIEGLER Lock							
Klebstoffe	Anwendung	Festigkeit	Viskosität	Eigenschaften	Max. Spaltüber- brückung in mm	Für Gewinde- verbindungen bis	Tempbestän- digkeit in °C
AN 301-43 DIN DVGW CERT	Schrauben- sicherung, DVGW-geprüft	mittelfest	höherviskos	Kennzeich- nungsfrei, hoher Gesund- heitsschutz	0,25	M 36	–60° bis 150°C
AN 301-72 DIN DVGW CERT	Rohr- Gewinde- und Flächen- dichtung PTFE, DVGW- geprüft	mittelfest	hochviskos	Kennzeich- nungsfrei, hoher Gesund- heitsschutz	0,3	M 80 3"	–60° bis 200°C
AN 302-21	Schrauben- sicherung, Vibrationsschutz	niedrigfest	niedrigviskos	leicht demontierbar	0,1	M 12	–60° bis 150°C
AN 302-43 DIN DVGW CERT	Schrauben- sicherung, DVGW-geprüft	mittelfest	höherviskos	normal demontierbar	0,25	M 36	–60° bis 150°C
AN 302-60	Schrauben- sicherung für passive Werk- stoffe wie Edelstahl und Aluminium	hochfest	mittelviskos	schwer demontierbar	0,15	M 20 3/4"	–60° bis 180°C
AN 302-70	Schrauben- und Stehbolzen- sicherung	hochfest	mittelviskos	schwer demontierbar	0,15	M 20 3/4"	–60° bis 150°C
AN 305-77 DIN DVGW CERT	Rohr- und Gewinde- dichtung, DVGW-geprüft	mittelfest	hochviskos	normal demontierbar	0,5	M 80 3"	–60° bis 150°C
AN 306-20 DIN DVGW CERT	Fügeverbindung, DVGWgeprüft	hochfest	höherviskos	schwer demontierbar	0,2	M 56 2"	–60° bis 200°C